CONTEST #3.

SOLUTIONS

3 - 1. 4 Solving yields $-\frac{22}{15}x > -6 \rightarrow x < \frac{6 \cdot 15}{22} = \frac{45}{11}$. Note that $5 = \frac{55}{11} > \frac{45}{11} > \frac{44}{11} = 4$, so the greatest integer that solves the inequality is **4**.

3 - 2. $(12, \frac{2}{3}, -3)$ and $(-12, -\frac{2}{3}, 3)$ [must have both] Subtracting the second equation from the first yields xz - yz = -34. Adding this to the third equation yields $2xz = -72 \rightarrow xz = -36$. Substituting back into the original equations yields xy = 8 and yz = -2. Now, $\frac{xz}{xy} = \frac{z}{y} = -\frac{9}{2}$, so $yz = y(-\frac{9y}{2}) = -2 \rightarrow y = \pm \frac{2}{3}$. Similarly, we see that $x = \pm 12$ and $z = \pm 3$. Making sure that the signs we choose work in all three original equations, we have $(12, \frac{2}{3}, -3)$ and $(-12, -\frac{2}{3}, 3)$.

3 - 3. $\lfloor 1.3450 \rfloor$ Since $\sin x = \cos(90^\circ - x)$, $\sin T = \cos R$ and $\sin R = \cos T$. The desired value is **1.3450**.

3 - **4**. $\mathbf{y} = \mathbf{x}$ and $\mathbf{T}_{4,4}$ (need both) Find the midpoints of the segments $\overline{BB''}$ and $\overline{OO''}$. The line through these midpoints is the line of reflection. Note that the midpoints are $B_1(2,2)$ and $O_1(3.5,3.5)$, so the line of reflection is $\mathbf{y} = \mathbf{x}$. Now, the reflection maps B(-2,2) onto B'(2,-2), so the translation must take B'(2,-2) onto B''(6,2). That means the translation is $\mathbf{T}_{4,4}$.

3 - 5. 5 Complete the square to obtain $x^2 + 6x + 9 + y^2 - 4y + 4 = 23 + 13$, which implies $(x+3)^2 + (y-2)^2 = 36$. Thus, (h,k) = (-3,2) and $r = \sqrt{36} = 6$. The desired quantity is -3 + 2 + 6 = 5.

3 - 6. $\mathbf{x} \leq -\mathbf{5}$ The given equation is equivalent to |x| - |x + 5| = 5. This can be solved using standard algebraic techniques, but consider the following. The desired values of x are those for which the distances from x to 0 and x to -5 differ by 5. This is true only for $\mathbf{x} \leq -\mathbf{5}$.

R-1. The diagonals of square ABCD intersect at E. How many distinct triangles can be formed whose vertices are at A, B, C, D, or E?

R-1Sol. [8] There are four "small" triangles, each of whose areas are one-fourth the area of the square. There are also four triangles that are made of two "small" triangles, namely $\triangle ABC$, $\triangle BCD$, $\triangle CDA$, and $\triangle DAB$. These are the only triangles. They total 8.

R-2. Let N be the number you will receive. The number $2^N \cdot 5^4$ is written as a decimal number. Compute the sum of the digits of this number.

R-2Sol. [7] Note that the product of 2 and 5 is 10. Every product of 2 and 5 will result in a terminal 0 in the decimal number. Substituting, we have $2^4 \cdot 2^4 \cdot 5^4$, or $16 \cdot 10^4$. The sum of these digits will be 1 + 6 = 7.

R-3. Let N be the number you will receive. The point P is one-third of the way from (N, N) to (16, -5). Compute the coordinates of P.

R-3Sol. (10,3) The coordinates of P are $\left(N + \frac{16 - N}{3}, N + \frac{-5 - N}{3}\right)$. Substituting, we obtain (10,3).

R-4. Let *P* be the point you will receive. The graph of the parabola with equation $y = ax^2 + bx + c$ passes through (6,3), (8,4), and *P*. Compute the product *abc*. **R-4Sol.** 12 Seeing that *P* is on the same horizontal line as (6,3) gives us the information that (8,4) is the vertex, so the parabola is of the form $y = a(x-8)^2 + 4$. Substituting (6,3) yields $3 = a(4) + 4 \rightarrow a = -1/4$. Expanding the brackets yields the equation of the parabola as $y = -\frac{1}{4}x^2 + 4x - 12$. The product *abc* is **12**.

R-5. Let N be the number you will receive. A jar contains 15 balls, of which N are black and the rest are red. If three balls are chosen from the jar without replacement, compute the probability that all three are red.

R-5Sol. $\begin{bmatrix} \mathbf{1} \\ \mathbf{455} \end{bmatrix}$ There are 15 - N = 15 - 12 = 3 red balls. Thus, the desired probability is $\frac{3}{15} \cdot \frac{2}{14} \cdot \frac{1}{13} = \frac{1}{\mathbf{455}}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com