CONTEST \#3.

SOLUTIONS

3-1. 4 Solving yields $-\frac{22}{15} x>-6 \rightarrow x<\frac{6 \cdot 15}{22}=\frac{45}{11}$. Note that $5=\frac{55}{11}>\frac{45}{11}>\frac{44}{11}=4$, so the greatest integer that solves the inequality is 4 .

3-2. (12, $\left.\frac{\mathbf{2}}{\mathbf{3}},-\mathbf{3}\right)$ and $\left(-\mathbf{1 2},-\frac{\mathbf{2}}{\mathbf{3}}, \mathbf{3}\right)$ [must have both] Subtracting the second equation from the first yields $x z-y z=-34$. Adding this to the third equation yields $2 x z=-72 \rightarrow x z=-36$. Substituting back into the original equations yields $x y=8$ and $y z=-2$. Now, $\frac{x z}{x y}=\frac{z}{y}=-\frac{9}{2}$, so $y z=y\left(-\frac{9 y}{2}\right)=-2 \rightarrow y= \pm \frac{2}{3}$. Similarly, we see that $x= \pm 12$ and $z= \pm 3$. Making sure that the signs we choose work in all three original equations, we have $\left(\mathbf{1 2}, \frac{2}{3},-\mathbf{3}\right)$ and $\left(-12,-\frac{2}{3}, \mathbf{3}\right)$.

3-3. 1.3450 Since $\sin x=\cos \left(90^{\circ}-x\right), \sin T=\cos R$ and $\sin R=\cos T$. The desired value is 1.3450 .

3-4. $\mathbf{y}=\mathrm{x}$ and $\mathbf{T}_{4,4}$ (need both) Find the midpoints of the segments $\overline{B B^{\prime \prime}}$ and $\overline{O O^{\prime \prime}}$. The line through these midpoints is the line of reflection. Note that the midpoints are $B_{1}(2,2)$ and $O_{1}(3.5,3.5)$, so the line of reflection is $\mathbf{y}=\mathbf{x}$. Now, the reflection maps $B(-2,2)$ onto $B^{\prime}(2,-2)$, so the translation must take $B^{\prime}(2,-2)$ onto $B^{\prime \prime}(6,2)$. That means the translation is $\mathbf{T}_{\mathbf{4}, \mathbf{4}}$.

3-5. 5 Complete the square to obtain $x^{2}+6 x+9+y^{2}-4 y+4=23+13$, which implies $(x+3)^{2}+(y-2)^{2}=36$. Thus, $(h, k)=(-3,2)$ and $r=\sqrt{36}=6$. The desired quantity is $-3+2+6=\mathbf{5}$.
3-6. $\mathbf{x} \leq-\mathbf{5}$ The given equation is equivalent to $|x|-|x+5|=5$. This can be solved using standard algebraic techniques, but consider the following. The desired values of x are those for which the distances from x to 0 and x to -5 differ by 5 . This is true only for $\mathbf{x} \leq \mathbf{- 5}$.

R-1. The diagonals of square $A B C D$ intersect at E. How many distinct triangles can be formed whose vertices are at A, B, C, D, or E ?
R-1Sol. 8 There are four "small" triangles, each of whose areas are one-fourth the area of the square. There are also four triangles that are made of two "small" triangles, namely $\triangle A B C$, $\triangle B C D, \triangle C D A$, and $\triangle D A B$. These are the only triangles. They total 8 .

R-2. Let N be the number you will receive. The number $2^{N} \cdot 5^{4}$ is written as a decimal number. Compute the sum of the digits of this number.
R-2Sol. 7 Note that the product of 2 and 5 is 10 . Every product of 2 and 5 will result in a terminal 0 in the decimal number. Substituting, we have $2^{4} \cdot 2^{4} \cdot 5^{4}$, or $16 \cdot 10^{4}$. The sum of these digits will be $1+6=\mathbf{7}$.

R-3. Let N be the number you will receive. The point P is one-third of the way from (N, N) to $(16,-5)$. Compute the coordinates of P.
R-3Sol. $(\mathbf{1 0}, \mathbf{3})$ The coordinates of P are $\left(N+\frac{16-N}{3}, N+\frac{-5-N}{3}\right)$. Substituting, we obtain (10, 3).

R-4. Let P be the point you will receive. The graph of the parabola with equation $y=a x^{2}+b x+c$ passes through $(6,3),(8,4)$, and P. Compute the product $a b c$.
R-4Sol. 12 Seeing that P is on the same horizontal line as $(6,3)$ gives us the information that $(8,4)$ is the vertex, so the parabola is of the form $y=a(x-8)^{2}+4$. Substituting $(6,3)$ yields $3=a(4)+4 \rightarrow a=-1 / 4$. Expanding the brackets yields the equation of the parabola as $y=-\frac{1}{4} x^{2}+4 x-12$. The product $a b c$ is $\mathbf{1 2}$.

R-5. Let N be the number you will receive. A jar contains 15 balls, of which N are black and the rest are red. If three balls are chosen from the jar without replacement, compute the probability that all three are red.
R-5Sol. $\frac{\mathbf{1}}{\mathbf{4 5 5}}$ There are $15-N=15-12=3$ red balls. Thus, the desired probability is $\frac{3}{15} \cdot \frac{2}{14} \cdot \frac{1}{13}=\frac{1}{455}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

